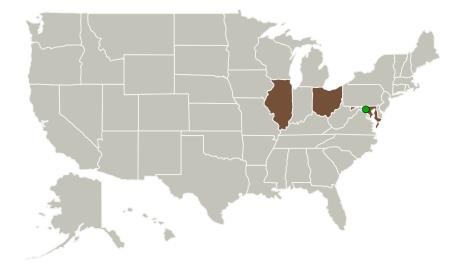
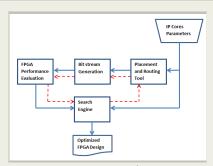
OrFPGA: An Empirical Performance Tuning Tool for FPGA Designs, Phase I




Completed Technology Project (2013 - 2014)

Project Introduction

With the capacity and performance of FPGAs suitable for space borne applications continuously increasing, the design of FPGAs is becoming increasingly complex involving trading off or simultaneous optimization of space, speed, and power. RNET and ANL are proposing to develop software infrastructure that facilitates automatic performance tuning of FPGAs in terms of speed, power, and size. We introduce an extensible empirical tuning tool system OrFPGA, which is aimed at improving both performance and productivity by enabling FPGA designers to create simple scripts that trigger various FPGA performance optimizations for a specific design. OrFPGA will generate various tuned versions of the same design with different designer parameters and evaluates the versions to select the best performing one for production use. The proposed work will leverage an existing performance tuning tool named Orio developed by ANL for empirical tuning of compute-intensive kernels for a given architecture.

Primary U.S. Work Locations and Key Partners

OrFPGA: An Empirical Performance Tuning Tool for FPGA Designs

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

OrFPGA: An Empirical Performance Tuning Tool for FPGA Designs, Phase I

Completed Technology Project (2013 - 2014)

Organizations Performing Work	Role	Туре	Location
RNET Technologies, Inc.	Lead Organization	Industry	Dayton, Ohio
Argonne National	Supporting	R&D	Lemont,
Laboratory(ANL)	Organization	Center	Illinois
Goddard Space Flight Center(GSFC)	Supporting	NASA	Greenbelt,
	Organization	Center	Maryland

Primary U.S. Work Locations		
Illinois	Maryland	
Ohio		

Project Transitions

May 2013: Project Start

May 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140471)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

RNET Technologies, Inc.

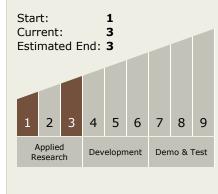
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

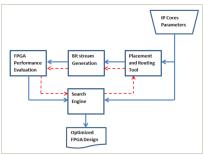
Principal Investigator:

Chekuri S Choudary

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

OrFPGA: An Empirical Performance Tuning Tool for FPGA Designs, Phase I


Completed Technology Project (2013 - 2014)

Images

Final Summary Chart Image OrFPGA: An Empirical Performance

Tuning Tool for FPGA Designs, Phase I Project Image (https://techport.nasa.gov/imag e/132697)

Project Image

OrFPGA: An Empirical Performance Tuning Tool for FPGA Designs (https://techport.nasa.gov/imag e/131828)

Technology Areas

Primary:

- TX02 Flight Computing and Avionics
 - □ TX02.1 Avionics
 Component Technologies
 □ TX02.1.5 High
 Performance Field
 Programmable Gate
 Arrays

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

